
CARBON DIOXIDE CAPTURE, STORAGE AND UTILIZATION

CARBON DIOXIDE CAPTURE, STORAGE AND UTILIZATION

By:

Ir. Maya Ramadianti Musadi, M.T., Ph.D.

penerbit itenas

CARBON DIOXIDE CAPTURE, STORAGE AND UTILIZATION

By: Ir. Maya Ramadianti Musadi, M.T., Ph.D.

This edition first published August 2020 © 2020 Penerbit Itenas

All right reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise.

ISBN: 978-623-7525-33-2

Penerbit Itenas,

Jl. PKH. Mustopha No.23 Bandung

Telp.: +62 22 7272215, Fax: +62 22 7202892

Email: penerbit@itenas.ac.id

PREFACE

Carbon dioxide (CO₂) emissions are the main cause of the greenhouse effect. CO₂ Capture and Storage (CCS) is an effort to reduce CO₂ emissions. There are some technologies to capture CO₂ in industry, namely Pre-combustion, Post combustion and Oxy-fuel combustion technologies. The Zero Emissions Petrol Vehicle (ZEPV) concept is one of the possibilities to eliminate CO₂ emissions from the transportation sector.

Reactions between CO₂ and H₂, such as methanol synthesis and methanation, could play an important role to overcome these emissions. The low methanol yield, both selectivity and conversion, is the main problem in the methanol synthesis. Methanation could be considered as another alternative process because the recent research showed that the yield in methanation process is high, the conversion of CO₂ to CH₄ was nearly 100%.

The book is divided into two sections dealing with hydrogenation of CO₂ and technology of CO₂ capture, storage, and utilization. This book is aimed at undergraduate and master students and those beginning a research career in CO₂ capture, storage, and utilization. It covers most of the main themes in hydrogenation of CO₂. The sources of CO₂ are from combustion engine, especially in the transportation sector.

Finally, I would like to express thanks to several people for their involvement with this book. I am grateful to a number of people who read the manuscript; thanks are especially to Prof. Reginald Mann, Prof. Paul Sharratt and Dr. Philip Martin for their helpful comments.

Bandung August 2020 RMD

CONTENTS

	ontents
	st of Tables
	st of Figures
1.	Introduction
2.	Hydrogenation of CO ₂
	2.1. Hydrogenation of CO ₂ to Methanol (Methanol Synthesis)
	2.2. Hydrogenation of CO ₂ to CH ₄ (Methanation)
	2.3. Hydrogen Spill-over in Methanol Synthesis
	2.4. Equilibrium Conversion
3.	Technology of Carbon Dioxide Capture, Storage and
	Utilization
	3.1. Zero Emiddion Petrol Vehicle (ZEPV)
	3.2. Zero Emission Power Plant (ZEPP)
$\mathbf{R}_{\mathbf{c}}$	forences

LIST OF TABLES

Table 2.1.	Elementary steps in Rasmussen's kinetic model 10				
	Elementary steps in the Chinchen's kinetic model 11				
Table 2.3.	Moles and mole fractions of CO ₂ , H ₂ , CH ₃ OH and H ₂ O				
	in the methanol synthesis from CO ₂ and H ₂ 21				
Table 3.1.	The Gibss free energies of reaction at different				
temperatures28					
Table 3.2.	Energy recycle penalty (η) 31				

LIST OF FIGURES

- Figure 2.1. The effect of pressure on the initial rate of methanation 13
- Figure 2.2. The effect of temperature on the conversion of CO₂ 14
- Figure 2.3. Scheme of hydrogen spillover in the absence of water on the surface 16
- Figure 2.4. Scheme of hydrogen spillover in the presence of water on the surface 16
- Figure 2.5. Effect of Pd loading on CO₂ conversion for the uniform gelation method Catalyst, MSC_L with H₂
- treatment at 250° C; SV = 4700 h^{-1} , 50 atm, 250° C 17
- Figure 2.6. Pd promotion of methanol synthesis from CO₂/H₂ (loadings refer to Pd/Cu atomicratio) 17
- Figure 2.7. Proposed mechanism for synthesis of methanol from CO₂ and H₂ Pd/Al+Cu/Zn/Al catalyst 18
- Figure 2.8. Proposed mechanism for synthesis of methanol from CO₂ and H₂ on Cu and ZrO₂ containing catalyst 19
- Figure 2.9. Scheme of hydrogen spillover from Pd to Cu in the absence of water on the surface 20
- Figure 2.10. Scheme of hydrogen spillover from Pd to Cu in the presence of water on the surface 20
- Figure 2.11. Homogenous gas phase equilibrium conversion (X_{eq}) of methanol synthesis from CO_2 and H_2 for several pressures and temperatures 23
- Figure 3.1. The principle of recycle chemical pathways for gasoline re-synthesis from CO₂ in the transportation sector 26
- Figure 3.2. Zero emission power plant (ZEPP) 33

CHAPTER ONE INTRODUCTION

Increased impact of a high CO₂ concentration in the atmosphere on the environment through the greenhouse effect has been of acute concern to the global community and many efforts are being made to control and reduce this emission. For example, several researches have looked at zero emission vehicles, such as battery driven cars (Electric Vehicles, EVs), hydrogen fuelled cars, Zero Emissions Membrane Piston Engine System (ZEMPES) and Zero Emission Petrol Vehicle (ZEPV), to reduce CO₂ emission in the transportation sector.

The ZEPV uses conventional petrol (which retains existing infra-structure) and a conventional internal combustion engine (ICE), but by closed cycle combustion (CCC), it is possible to store / sequester liquefied carbon dioxide on board. This carbon dioxide will be traded in at the filling station, returned to a "refinery" and catalytically converted back to petrol via methane/methanol using the methanol to gasoline (MTG) process. As well as being perfectly clean at the street level, this approach presents the possibility of sustainable transport using renewable sources of energy (Brewer 2000). Both ZEPV and ZEMPES used a highly pure O₂ "locally" separated for fuel combustion in the engine (Dutton 2003; Yantovski et al. 2004) with temperature control via admixed CO₂ to provide the same moderating effect as N₂.

Hydrogenation of CO₂ has received much attention since global warming, mainly caused by the increase in CO₂ emission, was recognised to be one of the most serious problems in the world. Methanol synthesis has been considered to play an important role in the reduction of CO₂ emissions. By using the MTG process, methanol is available to be converted to gasoline/petrol.

The apparently low conversion and selectivity of CO₂ is a problem in this hydrogenation. According to some previous studies, the main cause of the lower conversion is the presence of water on the active site of the Cu catalyst. Water tends to oxidize the active Cu during the reaction and was adsorbed on the active site of the Cu catalyst and inhibited adsorption of CO₂ and H₂ for the next catalytic reaction(Joo et al. 1999). The CO formation, as a by product, is the contributor to the lower selectivity in methanol synthesis from

CO₂ (Sahibzada et al. 1996). However, the sum carbon selectivity of CO and methanol in methanol synthesis was always greater than 99%. Conversion of the by product CO to methanol could greatly increase the selectivity in methanol synthesis.(Sahibzada et al. 1996).

By 100% CO₂ to CH₄ conversion(Kai et al. 2005), gasoline production from CO₂ via methane (CH₄) and methanol could be considered as another alternative process. So, there are presently four possible chemical pathways to produce gasoline from the recycled CO₂: direct CO₂ hydrogenation, the Camere process, the H₂O-CO₂ electrolysis and the methanation process. The energy recycle penalty (η), the extra energy needed to produce the energy equivalent of gasoline, is still used to analyse these chemical pathways. For the ideal case the energy recycle penalty for methanation process, 84 %, is bigger than that for direct CO₂ hydrogenation (38%) and the Camere process (45%) but is significantly smaller than for the H₂O-CO₂ electrolysis (135%).